
WHAT OPS CAN
LEARN FROM DEV

WILL THAMES
17 JULY 2015



OVERVIEW



ABOUT THIS TALK
Complement to last year's talk Designing and Developing
Software for Operations

Practices and principles for Operations to write, share
and rely on code.

Configuration/Deployment/Orchestration focus.

So Ansible/Chef/Puppet etc. but should apply to any code
used in Ops.

http://willthames.github.io/devopsdays2015/

http://willthames.github.io/devopsdays2015/


WHY?
Developers typically have sophisticated practices for
writing and maintaining large codebases.

Operations typically aren't as well versed in these
practices.

More people can use and contribute code when it's easy
to access and easy to improve.



ABOUT ME
Systems Engineer at Red Hat, Brisbane.

Previously at Suncorp, Brisbane and Betfair, London.

Contributor to Ansible.

But this talk is intended to be product agnostic.



WRITING SOLID
CODE



HIGHER LEVEL
LANGUAGES

Why use configuration management? Surely bash scripts
in an for loop over ssh will suffice?

Why use python or ruby? Surely assembly or C will suffice?



HIGHER LEVEL
AUTOMATION

Abstraction of patterns to higher layers

Repeatability

Error handling

Reduction of boilerplate code

Templating

API calls



ABSTRACTION
As with functions, modules, libraries and packages, wrap
up common operations into reusable code. This might be
a module for installing and configuring java, or deploying
a particular application type.

Chef has cookbooks, Ansible has roles and puppet has
modules for grouping a bunch of operations.

Ansible has modules and chef and puppet have providers
for creating new operations.



REPEATABILITY
What happens if you run your code twice?

What happens if the second time is six months from now?



VERSIONS
Give your dependencies version identifiers.

Specify the version of dependency in a suitable place.

Furthermore specify versions when pulling things from
yum, apt-get, git, mercurial etc.



SHARING CODE



VERSION
CONTROL

Have some. Which one is relatively unimportant.

Find out when something was changed, and by whom.

See what changed, and hopefully why (needs good
commit messages!)

Go back in time — revert changes, compare differences.



CODE SEPARATE
FROM DATA

Hardcode as little as possible in your templates and task
files (beware premature templating though!)

Should make it easier to maintain, and allows you to
source configuration from alternative data sources.

Using the same tools across all environments reduces
likelihood of error.

Try and make it so that your code could be shared with
the world without giving anything away.



DATA
INHERITANCE

Only write as much configuration as you need.

Some variables will be common to all applications across
a particular environment.

Some variables will be common to all environments for a
particular application.

Use Ansible groups, Chef roles and Puppet's profiles to
manage the inheritance hierarchy.



DATA
INHERITANCE



SECRETS
You will need a solution to what to do with secrets. There
are many.

ansible-vault, chef encrypted databags, eyaml.

Hashicorp's Vault, Keywhiz by Square.



COMMUNITY
Separation of code and data (particularly secret data)
allows you to share your work with others outside of your
organisation.

If you are able to share your code, you can include
contributions of others, or set your code free so that
others can manage improvements, that you can then
benefit from. Opening the source is the start of the
journey.



COMMUNITY
You can also benefit from work others have done — look
for modules that others have written before writing your
own. They may not be perfect, but they are a start.

See Ansible Galaxy, Puppet Forge, Chef Supermarket.



CODE QUALITY



OPS HATE TO
HEAR



OPS HATE TO
HEAR



AND IF OPS HATE
TO HEAR THEM

They really hate to be the ones saying them.



QUALITY
CONTROL

Use the tools.

ansible-lint, puppet-lint, Chef foodcritic.

pep8, go fmt etc.

dry run mode, diff mode



STANDARDS
DOCUMENTATION

Best practices are an advisory of things to consider. Call
them guidelines if you prefer.

Standards should be testable, preferably automated.

We manage our standards and best practices as a git repo
using pull requests to achieve consensus.

Any changes/additions to best practices and standards
must achieve a body of support.



CODE REVIEWS
All code reviews should be objective. If you're objecting
to a style issue, you should be able to point to
documentation (internally or using an existing style guide
for a language/framework)

Have a policy on what level of consensus is required to
accept code into the mainline codebase.

This will typically be a risk management tradeoff.



TESTING
Practices such as unit testing and integration testing are
currently difficult to achieve.

Which leaves end-to-end testing in production like
environments.

Virtual machines — RHEV, VMWare, Virtualbox etc.

PaaS — Heroku, Openshift etc.

Containers.

Public cloud (AWS, Azure, GCE etc) and private cloud
(Openstack)

Anything that isn't "your machine"



CONTINUOUS
INTEGRATION

Commit

Checkout

Static analysis

Automated provisioning

Apply configuration

Run test suite (e.g. serverspec)

Deploy to production



DISCLOSURE
I've yet to see the full implementation of the previous
slide in practice.

Focus on the things that are most likely to eliminate
unnecessary errors or effort.



THANKS FOR
LISTENING!



QUESTIONS?


